

Course E-Syllabus

1	Course title	Molecular Biology		
2	Course number	0334382		
2	Credit hours	3		
3	Contact hours (theory, practical)	(2,3)		
4	Prerequisites/corequisites	Bio 0304101		
5	Program title	B.Sc. in Biological Sciences		
6	Program code	0304		
7	Awarding institution	The University of Jordan		
8	School	School of Science		
9	Department	Biological Sciences Department		
10	Level of course	Third year		
11	Year of study and semester (s)	2020/2021, Fall Semester		
12	Final Qualification	B.Sc. in Biological Sciences		
13	Other department (s) involved in teaching the course	Non		
14	Language of Instruction	English		
15	Teaching methodology	□Blended ⊠Online		
16	Electronic platform(s)	⊠Moodle ⊠Microsoft Teams □Skype □Zoom □Others		
17	Date of production/revision	Oct.23.2020		

18 Course Coordinator:

Name: Khaldoun Al-Hadid Office number: 208 Phone number: 22203 Email:kalhadid@ju.edu.jo

19 Other instructors:

Name: Non Office number: Phone number: Email:			
Name: Office number: Phone number: Email:			

20 Course Description:

As stated in the approved study plan.

This course aims to introduce the students to the basic concepts of molecular biology. The first part covers the molecular nature of genes and organization of prokaryotic and eukaryotic chromosomes. The second part covers DNA replication, repair gene expression and gene regulation. Genomics, analysis of gene structure, and gene expression are covered briefly. Students are required to read selected chapters as self-studying. In the laboratory, the students learn hands-on techniques of recombinant DNA technology.

21 Course aims and outcomes:

A- Aims:

Gaining the knowledge and the skills of applying molecular biology concepts to explain how genes are replicated, transcribed, expressed, and regulated in both prokaryotic and eukaryotic domains.

B- Intended Learning Outcomes (ILOs):

Upon successful completion of this course, students will be able to:

1. Describe the DNA and RNA structures and properties.

2. Describe gene transcription process.

3. Describe the genetic code.

4. Describe gene translation process.

5. Summarize the basic steps of DNA replication and DNA repair mechanisms.

6. Describe the transcription control of genes in bacteria.

22. Topic Outline and Schedule:

Г

Weels	Lastrong	Taria	Teaching	Evaluation	Defenences
Week	Lecture	Торіс	Methods*/platform	Methods**	References
1	1,2	1. The beginning of Molecular Biology 1.1 Introduction 1.2 Insights into the nature of the heredity material 1.3 A model for the structure of DNA: the DNA double helix 1.4 The central dogma of molecular biology	Lecturing/ Microsoft Team	Exam	1 4-6 11 12
2	4,5	2. The Structure of DNA 2.1 Introduction 2.2 Primary structure: the components of nucleic acids 2.3 Secondary structure of DNA 2.4 Unusual DNA secondary structures 2.5 Tertiary structure of DNA	Lecturing/ Microsoft Team	Exam	17 18-22 22-29 30-34 35-37
3	7,8	3. The Versatility of RNA 3.1 Introduction 3.2 RNA is involved in a wide range of cellular processes 3.3 Structural motifs of RNA 3.4 The discovery of RNA catalysis 3.5 RNA-based genomes	Lecturing/ Microsoft Team	Exam	39 40-41 42-50 51-56 59-62
4	10,11	5. Genome Organization and Evolution 5.1 Introduction 5.2 Genome organization	Lecturing/ Microsoft Team	Exam	91 92-94 95-102

5	13,14	varies in different organisms 5.3 Packaging of the eukaryotic genome 5.4 The majority of the eukaryotic genome is noncoding 5.5 Lateral gene transfer in the eukaryotic genome 5.6 Prokaryotic and viral genome organization	Lecturing/ Microsoft Team	Exam	104-105 106-109 110-112
6	16,17	6. DNA Replication and Telomere Maintenance 6.1 Introduction 6.2 Early insights into the mode of bacterial DNA replication 6.3 DNA polymerases are the enzymes that catalyze DNA synthesis from 5 to 3	Lecturing/ Microsoft Team	Exam	117 118-120 121
7	19,20	6.4 Multi- protein machines mediate bacterial DNA replication 6.5 Multi- protein machines trade places during eukaryotic DNA replication 6.7 Telomere maintenance: the role of telomerase in DNA replication, aging, and cancer	Lecturing/ Microsoft Team	Exam	124-129 130-143 147-150
8	22,23	7. DNA Repair Pathways 7.1 Introduction 7.2 Mutations and DNA damage 7.3 Lesion bypass	Lecturing/ Microsoft Team		159 160-165 166 167-168

Π	1	740			
		7.4 Direct			
		reversal of DNA			
		damage			
		7.5 Repair of			
		single base			
		changes and			
		structural			
		distortions by			
		removal of DNA			
9	25,26	damage			
		7.6 Double-			
		strand break repair			
		by removal of			
		DNA damage			
			Lecturing/ Microsoft		169-177
			Team	Exam	178-180
		8. Recombinant	1		
		DNA			
		Technology			
		and Molecular			
		Cloning			
		8.1 Introduction			
	00.00	8.2 The			
10	28,29	beginnings of			
		recombinant			
		DNA technology			
		8.3 Cutting and			185
		joining DNA			186-189
		,	Lecturing/ Microsoft		190-194
			Team	Exam	
		8.4 Molecular			
		cloning			
		8.5 Library			
		screening and			
	a	probes			
11	31,32	8.6 Restriction			
		mapping and			195-206
		RFLP analysis			207-214
		8.7 DNA	Lecturing/ Microsoft		215-219
		sequencing	Team	Exam	220-223
		10.			
		Transcription in			
		Bacteria			
		10.1 Introduction			
		10.2 Mechanism			
12	34,35	of transcription			
14	54,55	10.3 Insights into			
		gene regulation			263-264
		from the lactose			265-272
		(lac) operon	Lecturing/ Microsoft		273-278
			Team	Exam	215-210
		10.4 Mode of			
13	37,38	action of	Lecturing/ Microsoft		279-281
	57,50	transcriptional	Team		282-285
11	1	aanseripuonai	i Calli		404-405

14	40,41	regulators 10.5 Control of gene expression by RNA 11. Transcription in Eukaryotes 11.1 Introduction 11.2 Overview of transcriptional regulation 11.3 Protein- coding gene regulatory elements	Lecturing/ Microsoft Team	Exam	292 293-295 296-298
15	43,44	11.4 The general transcription machinery 11.5 The role of specific transcription factors in gene regulation 11.6 Transcriptional coactivators and corepressors	Lecturing/ Microsoft Team	Exam	299-314 315-316 324

• Teaching methods include: Synchronous lecturing/meeting; Asynchronous lecturing/meeting

• Evaluation methods include: Homework, Quiz, Exam, pre-lab quiz...etc

23 Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	Period (Week)	Platform
Quizzes	15%	The first four labs		E-Learning
Report	5%			
Midterm Exam	30%	Chapter 1,2, 3, 5	Week 6	LMSysytem
Final Exam	50%	All Chapters	Week 15	LMSystem

24 Course Requirements (e.g: students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

25 Course Policies:

A- Attendance policies:

Students are allowed to not attend seven lectures (15%) in the whole semester. In this case, students must attend every lab weekly. If a student does not attend a lab, then he/she has a maximum number of four lectures to skip.

B- Absences from exams and submitting assignments on time:

If a student does not attend an exam, he/she will get zero grade in that exam, unless he/she shows a medical report that proves he/she could not attend the exam. In this case, a makeup exam will be offered to the student as soon as possible.

C- Health and safety procedures:

Students need to be aware of the basic procedure of laboratory safety. Part of the first lab in the first week of the semester is assigned to teach students these basic laboratory procedures.

D- Honesty policy regarding cheating, plagiarism, misbehavior:

University regulations will be implemented for any cheating attempt, plagiarism, and misbehavior.

E- Grading policy: 70% will be counted for the lectures, and 30% will be counted for the lab.

F- Available university services that support achievement in the course: The university provides lab materials and equipment.

26 References:

A- Required book(s), assigned reading and audio-visuals:

Fundamental Molecular Biology, by Lizabeth A. Allison, Second edition, 2012, Willy Publisher

B- Recommended books, materials and media:

Clips and animations will be posted on E-Learning

27 Additional information:

Name of Course Coordinator: Khaldoun Al-Hadid	Signature: Date:
Head of Curriculum Committee/Department:	Signature:
Head of Department:	Signature:
Head of Curriculum Committee/Faculty:	Signature:
Dean:	Signature: